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Recent experiments on long hollow nanocylinders have reported an anomalous broadening and a multistep
character of the resistive transition between normal and superconducting states with increasing magnetic field.
Here we show that a first-order phase separation is not the reason for such behavior since it can arise only for
a wall thickness that is much larger than in the investigated samples ��30 nm�. On the contrary, it is found
that the destruction of global coherence in the transition neighborhood should be triggered by intrinsic long-
range inhomogeneities of the cylinder.
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I. INTRODUCTION

Beside its obvious benefits to technological applications,
the physics of charge transport in mesoscopic structures rep-
resents a paradigm for phase transition in low-dimension
systems, and especially quantum phase transition,1–3 i.e., a
transition that occurs at zero temperature by changing an-
other parameter such as the applied magnetic field, the pres-
sure, or the level of disorder. Among the most investigated
but still unsolved problem is the insulator-superconductor
transition.3 Its understanding can play a key role for explain-
ing superconductivity in cuprates. However even in the case
of the metal-superconductor transition with standard BCS
mechanism, the effects of quantum fluctuations are
debated.2–5 One possible version of this phenomenon is the
destructive regime of superconducting hollow nanocylinders.
When the radius R of the tube is smaller than the zero-
temperature coherence length ��0�, the kinetic energy of the
supercurrent exceeds the condensation energy around half-
flux quanta of applied magnetic flux, �= �n+1 /2��0, and
the periodic destruction of superconductivity at zero tem-
perature occurs.6 Recent realizations7,8 of the Little-Parks
experiment9 with ultrathin aluminum tubes confirmed this
prediction, however they also reported a multistep resistive
transition with a temperature width that unexpectedly broad-
ens when departing from the zero-field critical temperature
Tc�0�.

To explain these observations, previous theoretical
investigations4,5 focused on the modification of the conduc-
tivity by critical fluctuations10 in a one-dimensional system
but their conclusions diverge. Vafek et al.4 proposed that
quantum critical fluctuations are responsible for the anoma-
lous resistance while thermal fluctuations have to be disre-
garded for their effects are several orders of magnitude too
small. However their calculations are limited to high tem-
peratures. On the other hand, Shah and Lopatin5 derived a
diagrammatic formalism valid to all temperatures and con-
cluded that quantum fluctuations are important only in a nar-
row vicinity of T=0 at the border of the parameter range
over which the experiments were carried on. But they found
qualitative behaviors of the resistance that were not experi-
mentally observed: a narrowing of the resistance drop for
increasing field in the classical regime and a nonmonotonous

temperature dependence in the quantum regime. Finally none
of the cited works have quantitatively reproduced experi-
mental results and, first of all, the steplike features observed
in the temperature variations in the resistance.

The discrepancies between the above theories and the ex-
periments lead to question the assumptions adopted by these
models, namely, the role played by fluctuations, the nature of
the disorder, and the effective dimension of the system. On
the other hand, the mean-field approximation proved to be
quite successful in describing low-Tc superconductors, even
for mesoscopic samples in cases when the order parameter
varies on length scales larger than the coherence length,11

because the Ginzburg parameter �i.e., the ratio of the thermal
energy to the characteristic fluctuation mode energy� is gen-
erally very small. Therefore it is reasonable to begin with it
before considering the effects of fluctuations. So in the
present paper we investigate possible mean-field explana-
tions of the observed phenomena. The reported resistive be-
havior during the transition suggests that the puzzling con-
duction properties result from a separation of the tube into
normal and superconducting sections since the resistance is
always lower than the normal one. We find that the transition
is of second order for the studied cylinders so that the phase
separation must be triggered by the tube inhomogeneities.
We then propose a minimal model where structural proper-
ties, i.e., geometric or normal-state parameters such as the
electron diffusivity, vary along the cylinder. The originality
of our model compared to previous ones is that the disorder
is modulated at the long-range scale: the parameters are as-
sumed to change smoothly. This yields an effective spatial
distribution of ��0� and of the local mean-field transition
temperature Tc�H� which explains the destruction of global
coherence and the peculiar variations in the resistance. The
paper gives the detailed description and an extension of the
results in a previously published comment.12 Its plan is the
following: in Sec. II we investigate the phase transition in a
perfectly homogeneous cylinder within the Ginzburg-Landau
�GL� theory; a minimal BCS model with inhomogeneous
disorder is proposed in Sec. III and the calculated resistance
in the limit of vanishing current is compared to experimental
data in Sec. IV; Sec. V discusses on the model validity as
well as possible extensions, and it includes the conclusion.
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II. GL THEORY OF A PERFECT CYLINDER

In order to interpret their resistance curves Wang et al.8

proposed a scenario in which the superconducting phase is
regularly split into 2n identical regions separated by normal
interfaces and they suggested that such a process is induced
by quantum fluctuations. Although an inhomogeneous phase
due to fluctuations was predicted close to the quantum criti-
cal point by theory,13 it was also shown that only a glassy
phase can arise, not a regular pattern of alternating normal
and superconducting regions. There are no clear physical
reasons why the proposed spontaneous separation in regular
segments should be stabilized by quantum fluctuations nor
why the latter should be effective at lower fields and finite
temperatures. Thus we first check within a mean-field ap-
proach, the GL theory,14–16 whether an inhomogeneous phase
can occur in a perfectly homogeneous cylinder.

The equilibrium state is found by minimizing the GL
functional F with respect to the complex superconducting
order parameter � and the local magnetic induction b=�
�A. We consider here only cylindrical symmetric solutions,
having in mind tubes with a radius of the order of the coher-
ence length where a gradient of the order parameter ampli-
tude in the orthoradial direction would cost too much energy.
We modify the standard form

F =� ����2 +
�

2
���4 + K����2 +

1

8�
�b − H�2, �1�

where �=−i� + 2�
�0

A and the uniform external magnetic field
H=Hez is applied along the cylinder by introducing
�=���� /�fei	 �f and 	 are real�, the coherence length
�=�K / ���, and the magnetic penetration depth


=��0
2� /32�3���K. Then minimizing with respect to the

vector potential yields the Maxwell equation,

� � � � A =
4�

c
js = − 
−2��0

2�
� 	 + A� f2, �2�

which enables us to write the normalized functional

F̃ =� dV	��2Q2 − 1�f2 +
1

2
f4 +

2��2

�0
AiQf2 + �2��f �2


�3�

as depending only on the order parameter. Here Q=�	
+ 2�

�0
AH with the applied vector potential AH= Hr

2 e�, and in-

duced Ai�r�= 1
c �dr�3 js�r��

�r−r��
is expressed as

Ai�r� =
�0

2�
�
n=1

� � dr1
3W�r,r1� ¯� drn

3W�rn−1,rn�Q�rn�

�4�

with W�r ,r��=−f2�r�� /4�
2�r−r��.
We now derive a criterion to determine the order of the

phase transition.17 The equilibrium energy at finite field is
perturbatively calculated from the zero-field ground state
which undergoes a second-order transition. In this case su-
perconductivity continuously vanishes at the transition and is
uniform along the axial direction. In the limit of small

cylinder-wall thickness t� and for applied flux ��
=�R2H���0, the distribution of the order parameter can
also be considered uniform in the radial direction so that
��r�= fein� �n is integer� to a good approximation.18 f is
actually the mean value of the exact amplitude. The gradient
term ��f �2 in functional �3� can then be neglected and keep-
ing only the first contribution in expansion �4� of Ai is
enough. Adding the latter to f4 /2 yields the coefficient

c4 =
1

2
−

�2

4�
2V� dr3� dr�3Q�r�Q�r��
�r − r��

�5�

for the term of order f4 in the functional. Here V=2�RtL is
the volume of the wall and L is the length of the cylinder.
The normal-state/superconductor transition can turn into a
first-order one by changing the applied field if c4 becomes

negative. Indeed the dependence F̃�f� can then be nonmo-
notonous and we obtain a metastable state at a finite value of
f stabilized by the higher-order powers of f in decomposition
�4�. At higher field values this state can eventually become
the ground state, leading to a first-order transition.15 In the
limit RL, the condition c4�0 yields the simple expression

�


�
�2

� � �

�0
�2

gt,R �6�

for �����0 /2 �as superconductivity nucleates with vorticity
number n=0� where the geometrical factor gt,R t /R, e.g.,
gt,R0.36 for t /R=0.4 in the experiments,7,8 and more gen-
erally when tR,

�


�
�2

� �n +
�

�0
�2 t

R
. �7�

So for well chosen parameters the same sample can undergo
a first-order transition at high field while the order of the
transition is two-near zero field. Note also that according to
expression �3� the second-order phase transition takes place
when ��2Q2−1�=0 that can be written as �n+� /�0�2

= �R /��2, so condition �7� takes the form


 � �Rt , �8�

which can be compared to the condition 
� t /�5 for a thin
flat film.15

We remind that the derived criterion formulated by Eq.
�6� and �7�, or �8� is a necessary requirement but may not be
enough for the emergence of a first-order transition. Never-
theless it is all we need for our present purpose. Using the
dirty-limit formula �=
 /�=0.715
L�0� /�el with the zero-
temperature London penetration depth 
L�0�16 nm for
aluminum,19 we deduce from inequality �7� that the transi-
tion cannot be of first order for the mesoscopic cylinders
with thickness t0.4R and electron mean-free path �el
�16 nm studied in experiment.7,8 The analysis is further-
more supported by the report of no hysteresis. So the possi-
bility of different parts of the tube being in a metastable
overcooled or overheated state must be excluded and cannot
explain the finite fraction of normal resistance. Thus a per-
fectly homogeneous cylinder cannot produce the reported
anomalous resistance in the mean-field scenario.
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III. MINIMAL BCS MODEL WITH DISORDER

Could the sample inhomogeneities then be responsible for
the observed phenomena at the transition? For example, the
GL expression of the critical temperature at a second-order
phase transition for a perfect and infinitely long tube is

Tc�H� = Tc�0��1 − 	 ��0�
R


2� �

�0
�2� �9�

when n=0.6,9 It shows that Tc�H� at finite field changes dra-
matically with the radius of the cylinder and the coherence
length at zero temperature ��0�. Expression �9� is quantita-
tively valid only in the vicinity of zero field. The exact Tc�H�
is calculated within the microscopic BCS theory.15,16 The
transition temperature is defined by the condition that the
linearized self-consistent equation of the gap

ln�T/Tc�0����r� = �K��2� − K�0����r� �10�

possesses a nonzero solution.16 In the dirty limit the operator

K�q̂2� = 2�kBT �
m=−�

+�
1

2��m� +
1

3
�vF�elq̂

2

�11�

for q̂=� or 0, where vF is the Fermi velocity and �m= �2m
+1��kBT are the fermionic Matsubara frequencies. For t
� the gap function ��r�e−in�� is nearly uniform in the
radial direction so we can use the approximation �2��r�
qn

2�,5,18,20 with

qn
2 =
� �n/r − �Hr/�0�2rdr

� rdr

. �12�

The nucleation temperature for e−in�� is then the solution of

ln��n� + ��1

2
+

an

�n
� = ��1

2
� , �13�

where � is the digamma function, �n=Tn�H� /Tc�0�, and

an =
2

�2

��0�2

R2 ���̃ − n�2 +
t̃2�̃2

4
+ n2	1

t̃
ln�2 + t̃

2 − t̃
� − 1
� .

�14�

Here �̃=�R2H /�0, t̃= t /R, and we have used the dirty-limit
equality ��0�=���vF�el /24kBTc�0�. The transition tempera-
ture Tc�H� is the maximum of the solutions Tn�H�. Expres-
sions �13� and �14� indicate that Tc�H� strongly depends on
the sample parameters through an like, for example, a0
� ���0�RH�2. The explanation of the inhomogeneous transi-
tion is then straightforward if the cylinder properties are as-
sumed to vary along the axis and transitions occur locally at
different critical temperatures defined by Eq. �13� �see Fig.
1�. The finite thickness of the cylinder wall mainly results in
a quadratic deviation that is superimposed on the periodic
dependence of Tc�H� and vanishes in the limit tR �Refs. 18
and 20� �see Fig. 1�c��.

The variations in the structural features along the tube
axis are actually unavoidable for samples such as the ultral-
ong and thin ones. To calculate their influences on the con-
duction at finite field, we then propose the minimal model
which assumes that the changes are small, continuous, and
taking place on a length scale larger than ��0�. We stress that
Tc�0� is the same over the whole cylinder so the zero-field
transition is sharp. An approximate invariance of Tc�0� with
the variation in the concentration of defects is expected ac-
cording to Anderson’s theorem.21,22 The hypothesis of small
variations for R and t relies on the quality of the samples and
seems experimentally fulfilled. The electron diffusivity D
=vF�el /3 can change due to an inhomogeneous distribution
of crystal defects in the sample and of surface roughness.
The effective smoothness of its variations stems from its av-
erage influence on superconductivity over a length scale of
��0�. Furthermore the typical modulation distance is assumed
much larger than the coherence length so that proximity ef-
fects between normal and superconducting parts are ne-
glected at first approximation. It will be shown below that
the assumption of smooth variation is consistent with the
experiments. Our theory is locally mean field in the sense
that the state of a section at position z along the cylinder is
determined by the local transition temperature derived from
Eq. �13� with z-dependent parameters. The magnetic re-
sponse via the screening current of superconducting parts is
neglected in the neighborhood of the second-order phase
transition. The total resistance of the cylinder is then calcu-
lated for small currents as the sum of the resistances of all
normal sections with Tc�H ,z��T. Note that this simplified
model is not suitable to describe the voltage for arbitrary
high intensity and the claimed changes of resistance curves
at different biases.8,23
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FIG. 1. �Color online� �a� Distribution of ��0� along an inhomo-
geneous cylinder with a constant radius R=75 nm. Corresponding
local critical temperatures Tc�H� �b� at different positions along the
cylinder for a constant wall thickness t=35 nm and �c� at position
z=0.5L for different values of wall thickness.
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IV. RESISTANCE VS H AND T

A. Broadening of the resistive transition

The broadening of the temperature width of the transition
at finite magnetic field can be understood within our model
as due to the inhomogeneous disorder because the variations
in an, and hence of the local Tc�H�, become larger when H
increases. As an illustration we consider a long inhomoge-
neous cylinder �L�100 �m���0�� of constant section �R
=75 nm, t=35 nm� but with a varying diffusivity or equiva-
lently ��0� along the axis �see Fig. 1�a��. The distribution of
coherence length is centered around the average value
�119 nm with the average deviation �8 nm. The monoto-
nicity of the spatial variation is not necessary and it is just
chosen here to clearly highlight the cause of the broadening.
The inhomogeneity of ��0� gives rise to a situation in which
some of the regions of the sample gradually become super-
conducting when the temperature is lowered. In the present
example the transition starts from the section at z=L and
ends at z=0 �see Fig. 1�b��. It is homogeneous only for H
=0 �at the mean-field description�. As illustrated by Fig. 1�b�
the difference of local Tc�H� between the two ends of the
cylinder, and thus the temperature width of the resistive tran-
sition, gets larger with increasing H and especially when the
applied flux approaches half-integer values of �0.

The corresponding dependence of the cylinder resistance
on the magnetic field and on the temperature is plotted in
Fig. 2. It nicely reproduces the main features of the experi-
mental observations reported by Liu et al.7 for cylinders of
the same dimensions �e.g., R=75 nm and t=30 nm for the
cylinder of Fig. 1A in Ref. 7�. The zero resistance at zero
temperature is observed only for an applied flux lower than
1.5�0 because the finite thickness of the cylinder wall de-
stroys the periodic behavior predicted for a small thickness.
And the resistances at ����0.5�0 and at 2�0 are finite frac-
tions of the normal resistance �N instead of being equal to 0

or �N as it would be expected for a homogeneous cylinder.
This results from an incomplete transition of the whole cyl-
inder due to the large broadening of the Tc�H� distribution at
finite field value.

A good quantitative agreement with experiment can be
achieved as illustrated by Fig. 3 where we calculate the tem-
perature dependences of the resistance at different field val-
ues for a cylinder with R=131.5 nm and t=30 nm corre-
sponding to sample Al-6 in Ref. 8. We note that the formula,
originally derived for a flat film, that is used in Refs. 7 and 8
to calculate the coherence length from the measured upper
critical field moderately overestimates it. We find, for ex-
ample, an average ��0� of around 110 nm in sample Al-6
while it is estimated to be 150 nm in Ref. 8. For simplicity
we assume here a monotonous decrease in the coherence
length along the tube. Such kind of distribution yields a regu-
lar resistance variation at the transition without any steplike
feature.

B. Steplike features

As shown above a monotonous distribution of parameters
along the cylinder cannot produce the steplike features in the
resistance curves. However in a long cylinder the variation is
unlikely to be monotonous. If the modulations occur on a
scale longer than the coherence length, large regions of the
cylinder around the local extrema can separately undergo a
phase transition at different temperatures and then induce
several jumps in the R�T� curves.

We calculate as an example the resistance curves of
aluminum cylinder Al-3 from,8 for which R�75 nm,
t�33 nm, and �=�0 /2 at H�580 G. We again assume
for simplicity that only ��0� varies along the axis. Its spatial
variations are fitted to the experimental resistance curve at
435 G and then used to compute the temperature dependence
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FIG. 2. �Color online� Ratio of the resistance � to the normal
resistance �N as a function of the applied magnetic field and the
temperature for the cylinder with the distribution of ��0� plotted in
Fig. 1�a�.
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FIG. 3. �Color online� �a� Proposal for a monotonous ��0� dis-
tribution along the cylinder and �b� the corresponding temperature
dependences of the resistance �lines� at different field values �from
left to right, H=190, 184, 175, 165, 155, 145, 115, 95, and 0 G�,
which fit the experimental data �joined dots� of sample Al-6 from
Ref. 8.

V. H. DAO AND L. F. CHIBOTARU PHYSICAL REVIEW B 79, 134524 �2009�

134524-4



of the resistance at all other fields. The inferred distribution
of ��0� is plotted in Fig. 4. It is determined following three
remarks. First, there is a one-to-one correspondence between
the coherence length and the critical temperature when other
parameters are fixed. So the fraction of the cylinder with a
defined value of ��0� is in principle known but not the posi-
tions where the coherent length has this value. Second,
smooth spatial variations in ��0� possess local extrema which
result in local extrema of Tc�H ,z� at fixed field. The sections
of the cylinder around these extrema yield divergent contri-
butions ���Tc /�z�−1 to the resistance variations dR /dT and
are responsible for the steplike irregularities in the slope of
the curves. Finally, the amplitude of the resistance jump at a
step is more or less proportional to ��2Tc /�z2�−1/2 at an extre-
mum. These considerations put constraints on the actual dis-
tribution of ��0� yet different possibilities still exist since the
positions of several extrema may indeed be changed without
significantly modifying the total resistance �within experi-
mental uncertainties�.

Figure 5 shows the calculated curves of resistance for
different applied fields. Remarkably, this simple model gives
a very good agreement with the experiment.8 The local defi-
nition of the transition temperature is possible, thanks to the
slow variations in structural features. This procedure is not
justified near Tc�0� where ��T� exceeds the length scale of
the modulations; however this is compensated by the vanish-
ing dispersion of Tc�H ,z� at H=0. The calculations repro-
duce the resistance nearly for all magnetic fields, except in
the vicinity of zero and near the half-flux quantum.

V. DISCUSSIONS AND CONCLUSION

The inferred distribution of ��0� that reproduces the ex-
perimental resistances is modulated on distances of the order
of 10 �m or more. This is larger than the zero-temperature

coherence length, the electron mean-free path, or the radius
and is consistent with the assumption of smooth variation.
The average variance of ��0� is around 10%–20% which
appears compatible with the inhomogeneity observed among
the samples. For instance, in Table I of Ref. 8, a variation in
the diameter of sample Al-4 in the range of 157–169 nm is
reported. Another illustration of the experimental variability
is obtained for the mean-free path by comparing the data for
Al-3 and Al-4 in Table I of Ref. 8: being made of the same
material and having close diameters these samples differ
drastically by their estimated mean-free paths �16 and 6.1
nm, respectively�.

Experiments show a narrow transition at zero field but not
the vertical drop of resistance predicted by the mean-field
theory �see Figs. 3, 5, and 6�. This small difference is ex-
pected since thermal fluctuations slightly broaden the zero-
field transition in low-Tc superconductors. This effect is ac-
centuated if the mean-field Tc�0� varies along the cylinder,24

which for simplicity we have not assumed in our model but
is possible in samples with the cylinder wall so thin that the
variations in surface roughness inhomogeneously affect the
normal density of states at Fermi level or the electron-
phonon coupling to a significant extent. As it is the case for
��0� there are likely cylinders where Tc�0� would smoothly
vary with position. In such a situation the R�T� curve at zero
field could also display several steps. The irregular variation
in the observed zero-field resistance in Fig. 5 could be inter-
preted as such for example �however the small temperature
width of the transition and the smearing effect of thermal
fluctuations prevent from drawing a definitive conclusion�.
We note that the inhomogeneous distribution of Tc�0� alone
cannot explain the measurements.7,8 According to equality
�9�, in the case that Tc�0� varies while ��0� /R is constant, the
resistive transition would get sharper with increasing applied
flux, which is the opposite of the experimental observations.

Several reasons could explain the divergences below 0.2
K observed at high field in Fig. 5. The larger experimental
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FIG. 4. �Color online� Coordinate dependences �a� of the zero-
temperature coherence length ��0� and �b� of the local transition
temperature Tc�H� at applied field H=435 G, used to fit the resis-
tance curves of sample Al-3 from Ref. 8. �c� Distribution of normal
and superconducting sections along the cylinder at the temperature
T=0.47 K.
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FIG. 5. �Color online� Thick lines: theoretical temperature de-
pendence of the cylinder resistance for applied magnetic field of
�from left to right� 456, 449, 445, 440, 435, 430, 425, 420, 415,
410, 405, 400, 347, 295, 246, 197, 145, and 0 G. Joined dots:
experimental data from Ref. 8.
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resistance indicates that certain regions are resistive while
according to their calculated transition temperatures they
should not. The discrepancy could be explained, for ex-
ample, by the gapless state which appears just below the
critical field.25 Going beyond the local approximation and
taking into account proximity effects should furthermore
yield quantitative modifications to the local resistivity. The
extra resistance could also be generated at field-weakened
superconducting links around local maxima of ��0� where
the current dynamically generates phase-slip centers.19 We
note by the way that this scenario may also explain why
several steplike features are less pronounced or even disap-
pear in measurements at high bias currents.23 Finally contri-
butions of critical fluctuations in the proximity of the quan-
tum phase transition could also be expected.

As concerns the dependence of the step structure on the
dimensions of the cylinder it is naturally explained by our
model. Superconductivity is affected by the diffusivity only
through its averaged value over an annulus of dimension
���0� along the cylinder axis. So for a given radius R the
relative variance of the diffusivity behaves as the square root
of 1 /R like the variance of the number of crystal defects in
the same averaging volume. Then the relative variance of the
local transition temperature at fixed applied flux behaves as
�����0� /R�2��R−5/2. This means that the temperature sepa-
ration between two steps in the resistive transition rapidly
decreases with increasing radius. This is fully confirmed by
comparing the R�T� curves in Ref. 8 for the samples Al-1 to
Al-4 having the diameters in the range of 150–169 nm and
Al-6 with d=263 nm. The steps are clearly seen for the
formers and almost disappear in the latter cylinder. Accord-
ingly sample Al-5 of diameter 212 nm shows an intermediate
width of the steps. The step separations become eventually
smaller than the experimental precision in cylinders with a
large diameter. As an illustration, one can compare the cal-
culated resistances for two alternative proposals of the ��0�
distribution, a monotonous one in Fig. 3 and a nonmonoto-

nous one in Fig. 6, which fit very well the data for sample
Al-6, the cylinder with the largest diameter: the differences
between the theoretical curves are not larger than the experi-
mental uncertainty. Besides we note that the shorter a sample
is, the less numerous are the extrema present in the variation
in ��0� and thus the less numerous are the steps in the resis-
tive transition. This also agrees with what is observed for the
shortest cylinders Al-5 and Al-6. In the limit where no extre-
mum is present a smaller widening of the transition with no
steplike variations should however subsist due to the uncon-
trollable disorder.

In Ref. 8 it is claimed that the observed steplike features
are regular and moreover follow the log 2 slope. A careful
examination shows that these statements are not sufficiently
supported by experiment. For example, the experimental
points for sample Al-1 in Fig. 4�a� of Ref. 8 are located on a
strongly curved line, not a straight one �even on a logarith-
mic plot�. Moreover the slopes of the supposed linear lines
are not equal for the two chosen tubes. Finally, as we have
shown an irregular separation in normal and superconducting
regions can explain the resistance behavior very well without
relying on such an exotic scenario. As pointed out by the
discussion in Refs. 12 and 23, in order to lift any doubt the
direct observation of the real distribution of the order param-
eter along the cylinder is highly desirable. It can be achieved
by probing the superconducting and normal sections with
scanning tunneling microscopy �STM� for example. If the
separation is triggered by an inhomogeneous distribution of
diffusivity as it is assumed in our model, it must correlate
with the variations in local resistivity in the normal state.
Since the alternating regions have typical lengths of several
micrometers, low temperature scanning laser microscopy26,27

could also be conveniently used. As an alternative to STM,
this method has the advantage of its setup simplicity and its
independence from the surface quality of the sample. Besides
the experimental observation of the long-range modulation
of disorder, it would also be interesting to fabricate and in-
vestigate tubes of thickness �
2 /R in order to probe the
other scenario discussed in Sec. II, in which the inhomoge-
neous distribution of the order parameter is induced by a
first-order phase transition in the applied field.

In conclusion, we determined a criterion for first-order
phase transition for hollow nanocylinders in magnetic field.
According to it, the recently studied superconducting cylin-
ders cannot exhibit a spontaneous transition to a symmetry-
broken order parameter. Instead, we found that the broaden-
ing of the resistive transition with increasing field is due to
the partial destruction of superconductivity triggered by the
structural inhomogeneities of the tubes. The long-range
modulated disorder naturally explains the steplike features in
the temperature dependence of the resistance as the manifes-
tation of local phase transitions around the extrema in its
spatial distribution. The local mean-field calculations repro-
duce quantitatively the experimental data for nearly all fields
and temperatures, which restrict the potential effects of quan-
tum critical fluctuations to the close vicinity of the zero-
temperature phase transition.
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FIG. 6. �Color online� �a� Proposal for an alternative nonmo-
notonous ��0� distribution and �b� the corresponding temperature
dependences of the resistance �lines� at different field values, which
fit the same experimental data �joined dots� as in Fig. 3.
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